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Fig.7c. Counter-rotating tangential twin screws. 
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Universal twin screw extruder



Mathematical modeling

• Up to this point our simulations were carried out 
on the fully-intermeshing co-rotating twin screw 
extrusion

• There are a number of advantages to  using other 
types of extruders depending on the task at hand

• Are the simulation technologies equally applicable 
to other types of extrusion

• Use the coupled die and extrusion flow as a 
realistic combination to probe. 



Co-rotating Fully-Intermeshing Twin Screw 
Extrusion



Flow Channel Solid Model



Flow Channel Cutaway



FEM Mesh
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Realistic channel, GNF
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Wall slip

No material exchange

Weighting function
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Total stress tensor

Unit tangent vector
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1 lead, 100 RPM, 230 lb/hr, 180°C, Pmax = 279 psi, m = 10,000 Pa-sn, n = 0.5
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Counter-rotating Tangential
Twin Screw Extruder

Non-Isothermal FEM Simulation



FEM Mesh



Counter-rotating, tangential, twin-screw extruder
with slit die: Case of matched flights

0 degree stagger angle in between the two screws



θsy θsy

Stagger angle in a counter-rotating, tangential, twin-screw extruder

θs = Stagger angle



Counter-rotating, tangential, twin-screw extruder
with slit die: Case of staggered flights

180 degree stagger angle in between the two screws
(fully-staggered)



Counter-rotating, tangential, twin-screw extruder with slit die         
Partially staggered flights: Stagger angle = 90 deg



Flow Channel Cutaway



Cross-sectional mesh of twin screws with matched flights at z = 0

Mesh development for the zero degree stagger



Cross-sectional mesh of twin screws with matched flights at z = L/8



Cross-sectional mesh of twin screws with matched flights at z = Lead/4, 



Cross-sectional mesh of twin screws with fully-staggered flights at z = 0

Mesh development for 180 stagger



Cross-sectional mesh of twin screws with fully-staggered flights at z = L/8



Cross-sectional mesh of twin screws with fully-staggered flights at z = L/4



Cross-sectional mesh at the entrance of converging section of the die



Cross-sectional mesh at the middle of converging section of the die



Cross-sectional mesh in the slit of the die



Terminology/Notation

dof = Degree of fill; Number of leads full

L = Screw lead 

m0 = Consistency index, Pa-sn

= 10,000 Pa-sn, assumed for present simulations 

n = Power law exponent

N = Extruder speed, rpm

p = Pressure; p = p(z)

P = Peak pressure



Q = Flow rate 

R = Screw (flight) radius

T = Temperature, K

Tin = Inlet temperature
= 453 K, assumed for present simulations   

Twall = Inside wall surface temperature of 
Extruder and die, K

z = Distance along extruder axis

ω = 2πN/60; angular speed, rad/s
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Pressure distribution in CRTTSE-slit die system
 dof = 0.5; n = 0.5; N = 100 rpm; p* = p/(m0ωn)
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Pressure distribution in the CRTTSE-slit die system 
dof = 5.0; n = 0.5; N = 100 rpm; P* = P/(m0ωn)
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Characteristic curves: Isothermal simulations; Matched flights
N = 100 rpm; Q* = Q/(R3ω); dP* = P/(m0ωndof)
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Characteristic curves: Nonisothermal simulations; Matched Flights
N = 100 rpm; Q* = Q/(R3w); dP* = P/(m0ωndof)
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Characteristic curves: Isothermal simulations; Staggered flights 
N = 100 rpm; Q* = Q/(R3ω); dP* = P/(m0ωndof)
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Characteristic curves: Nonisothermal simulations; Staggered flights 
N = 200 rpm; Q* = Q/(R3ω); dP* = P/(m0ωndof)
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Isothermal pressure distribution in corotating, intermeshing, 
twin-screw extruder and slit die system

dof = 1; N = 100 rpm; p* = p/(m0ωn)
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Temperature rise in corotating, intermeshing, twin-screw extruder and slit die 
system; Isothermal simulations; dof = 1; N = 100 rpm
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Isothermal pressure distribution in corotating, intermeshing, twin-screw 
extruder and slit die system

dof = 1; N = 50 rpm; P* = P/(m0ωn)
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Isothermal pressure distribution in corotating, intermeshing, twin-screw 
extruder and slit die system

dof = 1; N = 30 rpm; P* = P/(m0ωn)
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Nondimensional pressure vs stagger angle
Extruder speed = 100 rpm; Degree of fill = 1; n = 0.5

P* = P/(m0ωn)
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Nondimensional flow rate vs stagger angle
Extruder speed = 100 rpm; Degree of fill = 1.0; n = 0.5

Q* = Q/(R3ω)
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Conclusions

• Every type of extruder comes with its own 
challenges for modeling

• The methods are generally applicable
• However, the implementation is not 

straightforward. 
• It will be important to prepare for full 

implementation anticipating that a fully flexible 
manufacturing platform will be used in the near 
future. 




