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 For Energetics there 1s very Ilittle room for
experimentation and trial and error in continuous
processing of solid rocket fuels, propellants,
explosives; process 1s not forgiving

 Wrong marriage of conditions, geometry and
material properties will result in an incident

* Energetic materials are complex structured fluids
with degrees of high solid fill (50-88% by
volume).
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Continuous processing of such complex fluids at
minimum or no trial and error requires

Aprior1 characterization of the rheological
behavior of the energetic formulation

Mathematical modeling of the process

Good understanding of the structure development
aspects

Ways of characterization of microstructural
distributions and understanding of
structure/rheology relationships

Methods to verify-Validate

Fig. 3
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Methodology:

» Step #1: Determine the constraints
(maximum temperature, residence time,
stress magnitude, binder/particle
migration/air.....)

» Step #2: Characterize rheological behavior
as a function of specific energy mnput
concomitant with documentation of
microstructural distributions

Fig. 4
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Methodology:

» Step #3: Determine which type of
continuous processor satisfies the
constraints (single or twin, co versus
counter, tangential versus fully-
intermeshing)

» Step #4: Determine typical screw/barrel
configuration and operating conditions

Fig. 5
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Methodology:

» Step #5: Verity all at lab scale using well-
instrumented machines (simulation versus
experiment, rheological behavior, structure...)

» Step #6: Design and build additional hardware
necessary for the manufacturing operation

(dies...)

» Step #7: Test all at manufacturing scale
(stmulation versus experiment, rheological
behavior, structure...)

Fig. 6
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Major challenge arises from the highly filled nature of the energetic
materials, need to work at particle volume loading levels which approach
the maximum packing fraction Fig. 7
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Challenges: Rheology

Wall slip associated with all highly filled

materials; energetics have very high degrees of
solid fill

Viscoplasticity
Ease of separation of the binder from the solids

Complex microstructural distributions, which are
affected by the thermo-mechanical history during
processing

Fig. 8
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: Velocity of the fluid right
* Occurs on the b&SlS next to the wall is equal to
Of the fOI’matl on Of the velocity of the top plate

a particle-free Top plate moving

with velocity Vy,

apparent slip layer
(Vand Layer)

« Alters apparent
rheological
behavior

 Needs to be
incorporated into velosity is zero right Bottom plate stationary
simulation as the  nexttothewal
wall boundary
condition (Navier’s

slip condition)

wall slip In filled polymers

Fig. 11
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Slip velocity, Us, versus wall shear stress, Tw

Us — BTWSb

B= f( apparent slip layer thickness, d, binder shear viscosity)
sb=t (binder shear viscosity)

Fig. 14



Specialized rheometers are =

necessary

e Better to load the rheometer under vacuum
(best with remote loading capability)

* Need to change the surface to volume ratio
of the rheometer continuously to
characterize wall slip and yielding effects

* Need to follow the structure formation and
segregation aspects during characterization

Fig. 15



Concentrated suspensions are
structured complex fluids

The binder can segregate out of the suspension under
certain conditions

The particles may migrate in the transverse to flow
direction generating concentration gradients

The amount of specific energy input during the mixing
alters the structure and the rheology of the formulation

The air incorporated during the process alters the rheology
and the processability of the energetic material.

The size distribution of the particles can change during the
process.

Fig. 16



Need to characterize and then use
as part of the constraints:

* Conditions under which the binder separates
from the particles (jamming/demixing)

* Conditions under which the particles
migrate to generate significant
concentration gradients

 Flow instabilities/extrudate distortions

* Any changes 1n structure (degradation, air
incorporation, changes in particle size....)

Fig. 17
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The Grinding of the Powder in the Extruder
upon the Filtration of the Binder and Mat

Formation

Ammonium sulfate

Ammonium sulfate ground in ;
into the extruder Fig. 18

the extruder (same scale)
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Shear-induced Migration

In Poiseullle Flow

Shear-induced Migration Model

— Phillips et al. (1992)
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Concentration Distribution

In Poiseuille Flow
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—a/R=0.005
— a/R=0.05
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Modeling is necessary to optimize extruder selection, STEVENS
geometry and Operating ConditiOnS Institute of Technology

Which type of continuous processor needs to be used?

/ \ Shear Roll Mill

Single Screw

Twm Screw

Co—rotatmg Counter -rotating

TN

Fully-Intermeshing Tangential

Fig. 22
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Universal extrusion system for energetics
*Co-rotating ,
*Counter-rotating tangential Adjustable gap rheometer
*Counter-rotating fully-intermeshing

*Single screw extruder Fig. 23
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Counter tangential
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Reverse

Forward 30, 60, Reverse 30, 60,
Fully flighted forward and reverse screw 90 ° kneading 90 ° kneading

elements blocks blocks

Fig. 29
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Co-rotating twin screw extruder: same die: adjustable gap slit rheometg'gj
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Bulk pressure, P (MPa)
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Bulk pressure, P (MPa)
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Bulk pressure, P (MPa)
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The benefit of this approach:

* Such work, done prior to the actual continuous
processing of the live materials, eliminates or
minimizes the subsequent risk associated with the
precarious trial and error procedures and
experimental studies that are prevalent in other
industries.

 For other concentrated suspensions significant
benefits at large flow rates or for high raw
material/product costs

Fig. 45



