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Challenges keep increasing…..
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Specialized capabilities in particle formation, rheology, processing, simulation, structural analysis. 

Processing of  nanoparticles:
Examples

500 nm
In situ synthesis of200 nm

Processing of  Al nanoparticles
In situ synthesis of
hydroxyapatite

200 nm
100 nm

Intercalation and exfoliation 
of  clay tactoids into nanoclays
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Particle formation: 
Synthesis and crystallization
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2 nm 
oxideoxide 
layer

Al nanoparticlesAl nanoparticles

From Reactor to Continuous Processor



NUMBER OF CRYSTALS  VS TIME
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Color coding:

Gray : Carbon

Particle formation from solution crystallization: Polymorph control

Gray    : Carbon

White  : Hydrogen

Red     : Oxygen

Blue    : Nitrogeng

Green : Total volume
Ethylacetate 

E = 8.26 kcal/moleE = 10.90 kcal/mole
Epsilon CL-20

E = 489.82 kcal/mol

Beta CL-20- predicted -
E = 83.59 kcal/mole

- Beta CL-20 + 32 ethylacetate -- Epsilon CL-20 + 32 ethylacetate - y
E = 60 kcal/mole

p y
E = 2.2×107 kcal/mole

Energy minimization of  CL-20 in solution and polymorph prediction.
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DMSO- Dimethyl sulfoxide
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ETPR- Ethyl propionate
DDAC- 2,6-Dimethyl-1,3-dioxane-4-ol acetate
THF- Tetrahydrofurane
DMM- Dimethoxy methane
IPOETOH- 2-Isopropoxyethanol

Predicted polymorph types of CL-20 for

various solvent molecules.



For acceptable processability: Need low aspect ratio particles

What happens to packing density of the energetic suspension if the 
polymorph type changes (due to the solvents used) in the continuous mixer?



Epsilon (pure)

Experimental

Simulated

Simulated x-ray powder diffractions y p
of alpha and epsilon CL-20

compared to experimental data of 
pure epsilon.

.TECHNOLOGY FOR IDENTIFICATION OF 
POLYMORPH IMPURITIES
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Rheology and ProcessingRheology and Processing



Specialized Tools

• Custom designed rheometers with remote loading 
and data acquisition capabilities

d i d i i i h• Custom designed processing equipment with 
remote access for data acquisition and control-
– Example: Twin screw extrusion/electrospinning processExample: Twin screw extrusion/electrospinning process 

for the manufacture of nanofibers with nanoparticles
• Specialized source codes (FEM, FD) 
• Structural analysis tools for degree of mixedness, 

particle size analysis and coating thickness



Wh i h h l i lWhy is the rheological 
characterization of highly filledcharacterization of highly filled 

materials such a challenge?
Wall slip Dependence on the surface/volume ratio 
Viscoplasticity Dilatancy p y y
Role of air
Binder migration
Particle migration in the transverse to flow directionParticle migration in the transverse to flow direction

Special tools are necessary plus modified utilization of 
Conventional rheometers



Demonstration of Apparent Wall Slip
60% vol. solids
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Three types of  deformation with slip



Why was wall slip during flow 
so important for us so that weso important for us so that we 
had to study it over 23 years?
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Figure 1: Development of nonhomogeneous shear rate distributions in steady torsional flowFigure 1: Development of nonhomogeneous shear rate distributions in steady torsional flow 

with three different types of surface protrusions/asperities.



Demonstration of Viscoplasticity



Critical wall shear stress values

• BAMO/AMMO: No slip condition
• High density polyethylene: Slip at 0 2MPaHigh density polyethylene: Slip at 0.2MPa
• Poly(dimethylsiloxane): Slip at 0.07 MPa

Are molecular dynamics calculations capable of predicting 
the relative slip behavior of the three polymeric binders?the relative slip behavior of the three polymeric binders?



BAMO/AMMO-Fe HDPE-Fe PDMS-Fe

Simulated BAMO/AMMO, HDPE and PDMS melt flows and  interfaces with Fe surface.
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Calculated cohesive energy values of BAMO/AMMO, HDPE and PDMS.

Polymer

Simulation
Density
(g/cm3)

Coulomb
Energy

(cal/cm3)

VDW
Energy

(cal/cm3)

Cohesive
Energy

(cal/cm3)

BAMO/AMMO 1.2 -43 -38 -81

HDPE 0 9 67 2 69HDPE 0.9 -67 -2 -69

PDMS 1.2 -58 -3 -61



Table 2. Calculated adhesive energy values of BAMO/AMMO, HDPE and PDMS melts with the iron wall.

Polymer-Fe Interface

Simulation
Densitya

(g/cm3)

Coulomb
Energy

(cal/cm3)

VDW
Energy

(cal/cm3)

Adhesive
Energy

(cal/cm3)

BAMO/AMMO-Fe 2.1 (1.2) -132 -7 -140

HDPE-Fe 1.9 (0.9) -47 -13 -60( ) -60

PDMS-Fe 1.9 (1.1) -60 -8 -68



C ill h t ll li d ll h t tiCapillary rheometry- wall slip and wall shear stress corrections
Require multiple capillaries with differing diameters and L/D ratios



With wall slip rheology data become dependent on the
surface/volume ratio: Flow curves at constant capillary length/radius (L/R)



a) Off-line adjustable gap slit die

Filling station

b) On-line 
adjustable gap slitadjustable gap slit 
die

c) Squeeze flow 
rheometer-
explosion proof



Patented adjustable gap rheometer 
of HfMI capable ofof HfMI capable of 
In-line characterization of wall slip
and shear viscosity
In conjunction with extrusion 
processing

Special tool for faster and more accurate characterization: 
In line slit rheometer with adjustable gap. 



ADJUSTABLE GAP RHEOMETERADJUSTABLE GAP RHEOMETER

Pressure versus distance in the diePressure versus distance in the die



Filling station

Off-line adjustable gap slit die

Filling station



Compressive Squeeze Flow

F

Compressive Squeeze Flow
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Special tool for faster and more accurate characterization: 
I li lit h t ith dj t blIn line slit rheometer with adjustable gap. 



SIT Squeeze Flow RheometerSIT Squeeze  Flow Rheometer

Special tool for faster and more accurate characterization: 
In line slit rheometer with adjustable gap. 



Squeeze Flow Rheometer

Explosion proof version Views



Ability to solve the flow field and to determine parameters
from the inverse problemfrom the inverse problem.



Normal force F versus gap h during squeeze flow of suspension of PDMSNormal force, F,  versus gap, h,  during squeeze flow of suspension of PDMS 

with glass spheres (φ=0.1) as a function of the plate velocity.



Specialized capabilities for rheological analysis and design

Extensional flow behaviorExtensional flow behavior 
analysis of suspensionsy p



Uniaxial extensional rheometer



Rotary clamp system of the rheometer





Extensional stress growth vs. time behavior of 
l fill d l id 6 t th t i t d iglass filled polyamide 6 at three strain rates and comparisons

with  predictions of Lodge model.



Mathematical modeling of 
fl d h t t f iflow and heat transfer occurring 
in single/twin screw extrusionin single/twin screw extrusion 
and validation of the results





Variable degree of fill
3″ .5″

Flow direction, z

Forwarding fully-flighted
screws Reversing screwsKneading discs
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DEVELOPMENT OF TEMPERATURE DISTRIBUTIONS



Subtle effects can play a 
significant role in processing ofsignificant role in processing of 

highly filled suspensions
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1  μmμ

3  μm

Formation of  multi-layered vesicles of  LAS paste upon the drag and pressure induced 
deformation in the twin screw extrusion flow. 



Time matters!

Immediately after 
processing

1% C nanotubes

-99% PEG 600

1hr after processing1hr after processing



Degree of mix changes!
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Rheological behavior changes!
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as the CNT particles flocculate



Before shearing
Shear matters!

1% CNT+99% PEG600 

P ti l fl l tParticles flocculate

and orient upon shearing
After shearing



How do we validate the 
rheological/thermal behavior andrheological/thermal behavior and 

modeling? 



C i P i L bContinuous Processing Lab 
of HfMI: Twin Screw 
Extruder Facility and they
Slit Die Rheometer



MPR 7.5 mm twin screw extruder used at HfMI for the processing of nanocomposites



Universal twin screw extruder

Continuous mixer facility

Universal twin screw extruder

Single Screw

Twin Screw

Shear Roll Mill

Twin Screw

C t ti Counter-rotatingCo-rotating Counter rotating

Fully-Intermeshing Tangential



SIT Universal twin screw extruder: Co, counter, tangential, fully-intermeshing,
Adjustable length, split barrel with hydraulic opening,  field point based 
data acquisition.and process control. 
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Generation of nanofibers
with nanoparticles

HfMI technology: 
TSE with electrospinningTSE with electrospinning
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SUPPORT OF COMPANIES
• Aerojet • HerculesAerojet
• Alliant TechSystems
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• AOT Maryland

APV Chemical Machiner
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• IBM
• Kimberly-Clark

Le er Brothers• APV Chemical Machinery
• Ardent 
• AT&T Technologies
• Baker Perkins

• Lever Brothers
• Lockheed Missiles and Space
• Mobil Chemical Com.
• MPR Inc.

• Becton Dickinson
• Bergquist
• Ciba-Geigy
• Corning

• Norton
• Pennie & Edmonds
• PIA
• P&GCorning

• Cytec
• Dexter Electronic (Henkel Loctite)
• Dow Chemical Com.

D P t

P&G
• PPG
• Rheometrics
• Sun Chemical

St k l C b• DuPont
• Duracell
• Exxon Chemical Com.
• Eveready

• Stackpole Carbon
• Unilever
• Union Carbide 
• Union Camp

• GE
• GPU/JCP&L/AE

• Thiokol Space
• Warner Lambert
• WR Grace



With our thanks: 
D. Miller, ONR
D. Fair/ T. McWilliams, ARDEC
C. Murphy/J. Brough, NSWC/IH
---------
R. Yazici
J. Kowalczyk


