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Science and Technology Base of Synthesis, Crystallization and
Compounding of Particles into Concentrated Suspensions and
Shaping/Quality Control
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Figure 2. Packing of spherical particles with 2

Figure 1. Packing of unimedal zpherical particles _ _ : e
trultirnedal particle sze distribution ¢m = 0.90.

and rmexirmum packing fraction, 1Le., masimum
welume fraction, $m, of zolidz depending on the
pazking mode.

a) Simple cubk, $m=0.52

b} Body certered cubic, $m = 0.65

c) Face centered cubic, 4m = 0.74
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Fig. 4. TEM micrograph showing: e kyersd stroctore of a mvalil
walled carbom manoiabe .

Advances in the science and technology of
carbon nanotubes and their composites: a review

Erik T. Thostenson® . Zhifeng Ren®, Tsu-Wei Chou**

Fag. 10 Muorograph showing fasgled, spaghsis- Bee carbom sand-
falbesh gromn Wtk eodnentoda] CWD wehaagees

Challenges keep increasing.....
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Specialized capabilities in particle formation, rheology, processing, simulation, structural analysis.

Processing of nanoparticles:
Examples

200 nm

Processing of Al nanoparticles

In situ synthesis of
hydroxyapatite

Intercalation and exfoliation
of clay tactoids into nanoclays
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Particle formation:
Synthesis and crystallization
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Joint DoD/DOE Nontoxic Small Caliber Ammunition Development Program
Metastable Intermolecular Composites_Primer Project

RF Induction Is Used To Vaporize Bulk Material From The
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Particle formation from solution crystallization: Polymorph control

Color coding:
Gray : Carbon

White : Hydrogen

Blue : Nitrogen

Epsilon CL-20 _Ethylacetate
E = 489.82 kcal/mol E =10.90 kcal/mole  E = 8-26 kcal/mole

Beta CL-20- predicted -
E = 83.59 kcal/mole

- Epsilon CL-20 + 32 ethylacetate - - Beta CL-20 + 32 ethylacetate -
E = 2.2x107 kcal/mole E = 60 kcal/mole

Energy minimization of CL-20 in solution and polymorph prediction.
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AC- Acetone

MEK-  Methyl ethyl ketone
A- Acetophenone
DMSO- Dimethyl sulfoxide
NMP-  N-Methyl-pyrrolidone
ETAC- Ethyl acetate

IPAC- Isopropyl acetate

ETPR- Ethyl propionate

DDAC- 2,6-Dimethyl-1,3-dioxane-4-ol acetate
THF- Tetrahydrofurane

DMM-  Dimethoxy methane

IPOETOH- 2-1sopropoxyethanol

Predicted polymorph types of CL-20 for

various solvent molecules.



For acceptable processability: Need low aspect ratio particles

What happens to packing density of the energetic suspension if the
polymorph type changes (due to the solvents used) in the continuous mixer?
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Rheology and Processing



Specialized Tools

Custom designed rheometers with remote loading
and data acquisition capabilities

Custom designed processing equipment with
remote access for data acquisition and control-

— Example: Twin screw extrusion/electrospinning process
for the manufacture of nanofibers with nanoparticles

Specialized source codes (FEM, FD)

Structural analysis tools for degree of mixedness,
particle size analysis and coating thickness



Why is the rheological
characterization of highly filled
materials such a challenge?

Wall slip Dependence on the surface/volume ratio
Viscoplasticity Dilatancy
Role of air

Binder migration
Particle migration in the transverse to flow direction

Special tools are necessary plus modified utilization of
Conventional rheometers



Demonstration of Apparent Wall Sli

60% vol. solids
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Apparent slip layer

Three types of deformation with slip

Top plate moving
with velocity V.,

Bottom plate stationary

Appare

Top plate moving
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Bottom plate stationary Apparent slip layer
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Why was wall slip during flow
so Important for us so that we
had to study It over 23 years?
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Figure 1: Development of nonhomogeneous shear rate distributions in steady torsional flow
with three different types of surface protrusions/asperities.



Demonstration of Viscoplasticity




Critical wall shear stress values

« BAMO/AMMO: No slip condition
* High density polyethylene: Slip at 0.2MPa
 Poly(dimethylsiloxane): Slip at 0.07 MPa

Are molecular dynamics calculations capable of predicting
the relative slip behavior of the three polymeric binders?



HDPE-Fe PDMS-Fe

BAMO/AMMO-Fe

Simulated BAMO/AMMO, HDPE and PDMS melt flows and interfaces with Fe surface.
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Calculated cohesive energy values of BAMO/AMMO, HDPE and PDMS.

Simulation Coulomb VVDW Cohesive
Density Energy Energy Energy
Polymer (g/cm?) (cal/em?®) (calicm?) (cal/cm3)
BAMO/AMMO 1.2 -43 -38 _81
HDPE 0.9 -67 -2 69

PDMS 1.2 -58 -3 -61



Table 2. Calculated adhesive energy values of BAMO/AMMO, HDPE and PDMS melts with the iron wall.

Simulation Coulomb VDW Adhesive
Density? Energy Energy Energy
Polymer-Fe Interface (9/cm?d) (cal/cm?d) (cal/cm?d) (cal/cm?d)
BAMO/AMMO-Fe 2.1(1.2) -132 -7 -140
HDPE-Fe 1.9 (0.9) -47 -13 -60

PDMS-Fe 1.9 (1.1) -60 -8 68



Capillary rheometry- wall slip and wall shear stress corrections
Require multiple capillaries with differing diameters and L/D ratios



With wall slip rheology data become dependent on the
surface/volume ratio: Flow curves at constant capillary length/radius (L/R)
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Patented adjustable gap rheometer
of HfMI capable of

In-line characterization of wall slip
and shear viscosity

In conjunction with extrusion
processing

Special tool for faster and more accurate characterization:
In line slit rheometer with adjustable gap.



Preszsure, MPa
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Off-line adjustable gap slit die
Filling station

ENERPAC ¢ I




Compressive Squeeze Flow

-

SAMPLE

Special tool for faster and more accurate characterization:
In line slit rheometer with adjustable gap.
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Special tool for faster and more accurate characterization:
In line slit rheometer with adjustable gap.



Squeeze Flow Rheometer
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Ability to solve the flow field and to determine parameters
from the inverse problem.
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Normal force, F, versus gap, h, during squeeze flow of suspension of PDMS

with glass spheres (¢=0.1) as a function of the plate velocity.



Specialized capabilities for rheological analysis and design

Extensional flow behavior
analysis of suspensions



Uniaxial extensional rheometer



Rotary clamp system of the rheometer






1E+07
[ 240 °C

1 E+06 T

1E+05 |

€

1 E+04 T

- o A2 0.055
o A2 033
a A2

ﬁ)ég%glsﬁ)“rfh‘f%l'r@ﬁs growth vs. tlme"beﬂa\ﬂgcr'eéf
glass fibked polyamides6 at three stkain rates anek&omparisons
with predictions of Loggaénsyel.

EXTENSIONAL VISCOSITY (Pa-s)




Mathematical modeling of
flow and heat transfer occurring
In single/twin screw extrusion
and validation of the results



A Co-rotating Twin-screw Extruder
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DEVELOPMENT OF TEMPERATURE DISTRIBUTIONS

y Temperature in °C y Temperature in °C Temperature in °C
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Subtle effects can play a
significant role in processing of
highly filled suspensions
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Formation of multi-layered vesicles of LAS paste upon the drag and pressure induced
deformation in the twin screw extrusion flow.



Time matters!
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Rheological behavior change

G', Storage modulus, Pa

Sl
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Dynamic properties decrease over time

as the CNT particles flocculate



Shear matters!

19% CNT+99% PEG600
Particles flocculate

and orient upon shearing




How do we validate the
rheological/thermal behavior and
modeling?



Continuous Processing Lab
of HfMI: Twin Screw
Extruder Facility and the
Slit Die Rheometer
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MPR 7.5 mm twin screw extruder used at HfMI for the processing of nanocomposites



Continuous mixer facility

Universal twin screw extruder

Shear Roll Mill

Single Screw

Twin Screw

TN

Co-rotating Counter-rotating

TN

Fully-Intermeshing Tangential




SIT Universal twin screw extruder: Co, counter, tangential, fully-intermeshing,
Adjustable length, split barrel with hydraulic opening, field point based
data acquisition.and process control.
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Generation of nanofibers
with nanoparticles

HfMI technology:
TSE with electrospinning



Government Sponsors
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SUPPORT OF COMPANIES

Aerojet

Alliant TechSystems
Allied-Signal

AOT Maryland

APV Chemical Machinery
Ardent

AT&T Technologies
Baker Perkins

Becton Dickinson
Bergquist

Ciba-Geigy

Corning

Cytec

Dexter Electronic (Henkel Loctite)
Dow Chemical Com.
DuPont

Duracell

Exxon Chemical Com.
Eveready

GE

GPU/JCP&L/AE

Hercules

Hershey Chocolate
IBM
Kimberly-Clark
Lever Brothers
Lockheed Missiles and Space
Mobil Chemical Com.
MPR Inc.

Norton

Pennie & Edmonds
PIA

P&G

PPG

Rheometrics

Sun Chemical
Stackpole Carbon
Unilever

Union Carbide
Union Camp
Thiokol Space
Warner Lambert
WR Grace
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