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EXTRUSION FLOW: OCCURRENCE OF FLOW INSTABILITIES
IS A RATE LIMITING STEP IN THE EXTRUSION
OF ENERGETIC SUSPENSIONS

Shark skin Gross Melt Fracture

UPON EXIT FROM THE DIE UPON EXTRUSION
EXTRUDATE SURFACE AND BULK DISTORTIONS
CAN OCCUR



Experimental set-up:
Capillary flow

Thermal Imaging
Camera

High Speed Camera
Up to 2000 fps
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UNDERSTAND THE PHENOMENON WITH INERT POLYMERS
High density polyethylene and Poly(dimethyl siloxane) and suspensions
With spherical glass beads (10 micron) in 10 to 40% by volume

0.375 in

Figure 4



UNDERLYING FACTOR FOR
DEVELOPMENT OF FLOW
INSTABILITIES IN THE DIE

Break-down of the continuity 1n the
wall boundary
condition:Hypothesis

1. Going from no-slip to slip
condition

2. Going from slip to stick condition
along the length of the die



TRANSITIONS IN THE WALL
SLIP CONDITION OCCUR ON
THE BASIS OF STEP
CHANGES IN SHEAR STRESS
AND PRESSURE ALONG THE
WALL
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Critical wall shear stress values at
slip 1n torsional flow

« HDPE:
~ @ 170°C .19 MPa
~ @ 190°C 20 MPa
~ @210°C 22 MPa
. PDMS:
~ @ 10°C 067 MPa
— @30°C 069 MPa

~ @ 50°C 068 MPa



Unfilled PDMS
Ug = BTWSb (1 + tanh(oc(rw —Tg )))

Unfilled PDMS: slip velocity versus the shear stress
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Capillary flow curves and the extrudate distortion behavior as a function of the apparent
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Flow curves and extrudate distortions for unfilled PDMS as a function

of apparent shear rate and gap of rectangular slit die at 30 °C.
FLOW INSTABILITIES ARE ONSET AT CRITICAL WALL SHEAR STRESS
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IS THERE ANOTHER
PROCESS WHICH IS
GOVERNED BY SUCH
TRANSITIONS AND
INSTABILITIES?

Figure 14



CONTINUOUS SHEAR ROLL MILLING PROCESS-

Conveying Roll Homogenization,
(smoother surface)  Dispersion Feed

>~

Product Compression, Feed Roll
Scraper Melting rougher surface

Figure 15
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(a) Under typical processing conditions, the material (b) Material sticks to the conveying roll when the conveying
sticks to the feed roll which has a roughened surface roll temperature is is at least 17°C higher than the feed roll

Figure 18
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R, Radius of

Velocity the roll
Extremum

_- Velocity
e Extremum

Schematic drawing of the nip region of the shear roll mill and the
velocity profiles for similar roll speeds
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Mathematical modeling of shear roll mill: Comparison of the pressure profiles
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Wall Shear Stress, T,, Pa
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UNSTABLE

Shear stress profile on the roll surfaces along the nip
(feed and conveying roll speeds at 40 rpm)

250000

200000

—¢— Conveying Roll

—2— Feed Roll

=

150000

100000

50000 -

Location at which
Presurization ends

Nip,

Minimum Gap

-50000

Wall Shear Stress, T,, Pa

Detachment 4
Point

-100000

5
\

A

s A
/
/

-150000

Maximum Shear
stress at the

e

-200000

\\‘\‘\nzzi/

-250000

Distance, mm

Figure 23



UNSTABLE Shear Stress on the Roll Surfaces (RPM 16/29)
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CONCLUSIONS

[F DURING PROCESSING FOR EXAMPLE, EXTRUSION OR
SHEAR ROLL MILLING IF THE CRITICAL SHEAR STRESS
OF THE POLYMER IS SURPASSED, FLOW INSTABILITIES
ARE ONSET, SINCE THE FLOW BOUNDARY CONDITION
AT THE WALL IS NO LONGER CONTIGUOUS ALONG THE
WALL BUT THERE IS A STEP CHANGE FROM STICK TO
SLIP

Figure 25



What 1s the trigger for the wall
shear stress to change along the
length of the die?

1. Compressibility effect
2. Ship coefficient a function of
pressure

Figure 26
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Wall slip velocity versus pressure and wall shear stress
behavior of PDMS.
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Ug (m/ S)

Wall slip velocity versus pressure and wall shear stress

behavior of model suspension (¢p=0.2).
Figure 28



MATHEMATICAL MODELING OF THE
TIME DEPENDENT FORMATION OF
FLOW INSTABILITIES IN CAPILLARY
FLOW FOR MELTS AND THEIR
SUSPENSIONS: WHY DO THE
SUSPENSION FLOW INSTABILITIES
REDUCE WITH INCREASE OF
PARTICLE CONCENTRATION?

Figure 29



Simulation (straight land section):

Compressibility

*Wall slip, f(P, Wall shear stress)
*Time-dependence

*Generalized Newtonian fluid

Figure 30



Apparent slip layer, &

Formation of the apparent slip layer during the flow of energetic suspensions

Figure 31
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Capillary flow curves and the extrudate distortion for PDMS with 10% by volume glass
particles at constant capillary length over the diameter ratio but with differing capillary diameters.
The arrows with broken lines indicate distortions of the extrudates.
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Time-dependent equations of continuity and motion:

,
PO p+ LN =0
ot oz|\ 14

oV 27 1 op

ot (w+y)R p+y o

V 1s the mean velocity in the channel in z-direction, t 1s time,
P 1s pressure, T, 1s the wall shear stress.

0

Figure 34



Poly(dimethyl siloxane) with 40% spherical glass:
Ug = BTWSb (1 + tanh(oc(rw —Tg )))

ﬂ :ﬂo(pa/ p)K

Critical wall shear stress at which
strong wall slip 1s observed:

T, 35,000 Pa

m=47600Pa-s""”, n=0.15, y =1.6x10°m-s™,y, =1073.4kg -m~
7, =40000Pa, By =3.5x10"Pm-s71.pa=217,
xk =0.3, and sh=2.17. Figure 35



Solve numerically using finite differences (Predictor-Corrector):

f’m/z - pil+1/2 " ((pil+3/2 + pi|+1/2)/2 + 7 /7/)‘/i|+1 _<( pil+1/2 + pil—l/z)/2+7/1 /7/)‘/i| —0

At AZ
\7i _Vil + 27w: n 1 pi|+1/2 - pi|—1/2 ~0
| | | | o
At (7/( Piija + Pin2)/ 2+ )R (7/( Pisyn t+ pi+1/2)/2+7/1) Az
| R{op) | ap |
R e
2\ 0z i 0z Sj

At time step, Az grid spacing, | is the time step index, and N
. . . Figure
F 1s the function to obtain steady state value of mean velocity V



If wall slip velocity 1s a function
of pressure and 1f one wishes to
predict instabilities 1n capillary
flow, which other flow
configuration can be used to
determine the effect of pressure
on wall slip?

Figure 37
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Normal force, F, versus gap, h, during squeeze flow of suspension of PDMS

with glass spheres (¢=0.1) as a function of the plate velocity.
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Time and location dependent distributions of
pressure, p,

wall shear stress, Tw, mean velocity, V,

and wall slip velocity, u, for an apparent
shear rate of 3.2 s-1 for ¢=0.1
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STABLE FLOW CONDITION

b)

pa TW (Pa)

P, TW (Pa)

10° g 0.0012
i VanVan¥ L Lo Ve L VanY L O_ 0-0010
105 |
F_ - ] 0.0008
104 k p 1 0.0006
3 e
[ —e— Vv 1 0.0004
108 F — U
§ 1 0.0002
102 E ! L ! 0.0000
0.0 0.5 1.0 1.5 2.0
t(s)
107 ¢ 0.0012
FSSsscs: 0.0010
100 | P 4 0.0008
] e
5 - - 0.0006
. —_— U
10° b s 4 0.0004
4 0.0002
10* L L . L 0.0000
0.00 0.02 0.04 0.06 0.08 0.10

z (m)

Figure 41

V, ug (m/s)

V, ug (m/s)



. . o ) a) 10 0.30
Time and location dependent distributions 1 oss
Of th

¥ 4 0.20
pressure, p, wall shear stress, 1,,, S Loss
mean velocity, V, and wall slip Sl ___ " Lot

. o 4 b
velocity, u, at the apparent shear rate of ol — Loos
2700 s-1 10° L L L L 0.00
0.0 0.5 1.0 1.5 2.0

fOI‘ (I):() 1 t (s)
a. Time dependence at z=0.95 L

. 10% g - 0.30
b. Location dependence under steady b)

[ 0.25

state. o
;cr; i 0.20
; 100 b 0.15
:'; _ 0.10
10°

0.05

STABLE FLOW CONDITION

10°
0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.00

z(m)

Figure 42

V, ug (m/s)

V, ug (m/s)



Time and location dependent distributions of
pressure, p, wall shear stress, t,,, mean velocity,
V,

and wall slip velocity, u,, at an apparent

shear rate of 160 s of PDMS suspension

with glass spheres (¢=0.1)

a. Time dependence at L/2
b. Typical location dependence under unsteady

state conditions.
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Flow curves and the delineation of the steady and unsteady behavior of tube flow of PDMS

and its suspensions with glass spheres (¢=0.1, 0.2 and 0.4)
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Pure PDMS: experiment vs sitmulation
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Wall shear stress versus the apparent shear rate for three sets

of capillaries with differing diameters: Diamond-0.83mm,

square-1.5mm, triangle-2.5mm, filled symbols—unstable, open symbols— stable,
symbols with dot inside -- experiment
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COMPARISONS WITH EXPERIMENTS

(9=0.1)
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COMPARISONS WITH EXPERIMENTS

Comparisons of experimental
flow curve of

PDMS suspension

with the numerical simulations:
Diamond-D=0.83 mm,

square- D=1.5 mm,
triangle-D=2.5 mm,

filled symbols—points

that are predicted to be unstable,
open symbols— points

that are predicted to be stable,
open symbols with crosses
experimental data;

Tw (Pa)

dotted lines represent the lower and

upper bounds of apparent shear
rates over which extrudate
distortions are

experimentally observed.
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COMPARISONS WITH EXPERIMENTS

Comparisons of experimental
flow curve of

PDMS suspension

with the numerical simulations:
Diamond-D=0.83 mm,

square- D=1.5 mm,
triangle-D=2.5 mm,

filled symbols—points

that are predicted to be unstable,
open symbols— points

that are predicted to be stable,
open symbols with crosses
experimental data;

dotted lines represent the lower and
upper bounds of apparent shear
rates over which extrudate
distortions are

experimentally observed.
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Flow curves and emerging extrudates for 40% by volume glass filled PDMS as a function
of apparent shear rate and gap of rectangular slit die at 30 °C.
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The elastomer is opaque when significant air is
introduced in the extruder




Twin Screw Extruder

Air at the surface of the die, as captured with high speed camera

Figure 52
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RESULTS WHICH SHOW
THAT THE ENTRANCE
FLOW- DEGREE OF
CONVERGENCE OF THE
TAPER IS NOT SIGNIFICANT
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Flow through a simple capillary die (Poiseuille flow). IN THE EXPERIMENTS
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Capillary flow curves and the extrudate distortion behavior as a function of the angle
of convergence of the entry section of the capillary die for unfilled PDMS melt.
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Continuous Processing
Lab of HIMI: Twin Screw
Extruder Facility and the
Slit Die Rheometer
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BAMO/AMMO (d=1.21 glcm?)-Fe,O, POLYETHYLENE (d=0.85 PDMS(d=1.08 g/cm?) -Fe,O,
g/cm3)-Fe, O,

Simulated polymer melts and the polymer-metal interfaces are shown as

2axbx2c and 2axbxc respectively.
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Simulation (straight land section):

Compressibility

*Wall slip, f(P, Wall shear stress)
*Time-dependence

*Generalized Newtonian fluid

Figure 66
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Correct shear rate for the suspension at the
interface with the slip lavyer:
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FIG. 4. The characteristic time necessary 10 reach steady state vs the true shear rate at 25, 60, and 90 °C.
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Fig. 11 Temperature at the die versus time in twin screw extrusion processing: effect of vacuum imposition,



